Estimador Puntual de la Varianza y Desviación Estándar Poblacional

Según Levin, R. I., & Rubin, D. S. (2004). Suponga que la administración de la compañía de suministros clínicos desea estimar la varianza y/o la desviación estándar de la distribución del número de jeringas empacadas por caja. El estimador más utilizado para estimar la desviación estándar de la población σ , es la desviación estándar de la muestra, s.

Podemos calcular la desviación estándar de la muestra como se muestra en la siguiente tabla y descubrir que es 6.01 jeringas.

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Estimador Puntual de la Varianza y Desviación Estándar Poblacional

Valores de <i>x</i> (jeringas por caja) (1)	x ² (2)	Media de la muestra \overline{x} (3)	$(x-\overline{x})$ $(4)=(1)-(3)$	$(x - \overline{x})^2$ $(5) = (4)^2$
101	10,201	102	-1	1
105	11,025	102	3	9
97	9,409	102	-5	25
93	8,649	102	-9	81
114	12,996	102	12	144
103	10,609	102	1	1
100	10,000	102	-2	4
100	10,000	102	-2	4
98	9,604	102	-4	16
97	9,409	102	-5	25
112	12,544	102	10	100
97	9,409	102	-5	25
110	12,100	102	8	64
106	11,236	102	4	16
110	12,100	102	8	64
102	10,404	102	0	0
107	11,449	102	5	25
106	11,236	102	4	16
100	10,000	102	-2	4
102	10,404	102	0	0
98	9,604	102	-4	16

Estimador Puntual de la Varianza y Desviación Estándar Poblacional

97	9,409	
94	8,836	
103	10,609	
105	11,025	
112	12,544	
93	8,649	
97	9,409	
99	9,801	
100	10,000	
99	9,801	
3,570	365,368	

[3-17]
$$s^2 = \frac{\sum x^2}{n-1} - \frac{n\overline{x}^2}{n-1}$$

$$= \frac{365,368}{34} - \frac{35(102)^2}{34}$$

$$= \frac{1,228}{34} \qquad \leftarrow o \rightarrow$$

[3-18]
$$s = \sqrt{s^2} =$$

$$= \sqrt{36.12}$$

$$= 6.01 \text{ jeringas}$$

= 36.12

Suma de los cuadrados de todas las diferencias

Suma de los cuadrados de las diferencias entre 34, el número de piezas de la muestra —1 (varianza de la muestra)

$$\frac{\Sigma(x-\bar{x})^2}{n-1} \to 36.12$$

Desviación estándar de la muestra *s*

$$\sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} \rightarrow 6.01 \text{ jeringas}$$

REFERENCIAS:

Levin, R. I., & Rubin, D. S. (2004). Estadística para administración y economía. Pearson Educación.