

Principios de la Concentración Gravimétrica

El fenómeno de asentamiento subyace a todos los procesos de concentración gravimétrica.

Asentamiento Libre

Este fenómeno se puede definir como el proceso en el que partículas se asientan libremente en un fluido sin que se les presente ningún obstáculo (e.g., otras partículas).

Principios de la Concentración Gravimétrica

El asentamiento de estas partículas se puede calcular a partir de las ecuaciones de Newton y Stokes. Para tamaños mayores a 2000 µm aplica la siguiente ecuación:

$$V_m = \sqrt{\frac{4}{3f}} \frac{\rho - \rho'}{\rho'} dg$$

Donde la velocidad final de asentamiento es Vm, el coeficiente de resistencia o factor de fricción es f, las densidades del sólido y del fluido son ρ y ρ , respectivamente, el diámetro de la partícula es d y la fuerza de gravedad es g.

Principios de la Concentración Gravimétrica

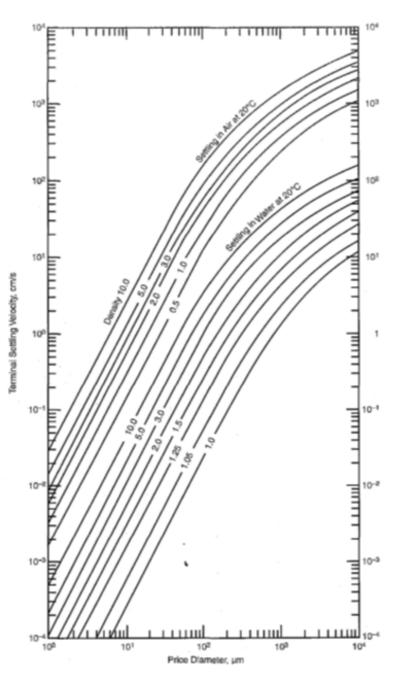


Figura 2. Velocidades, límite de asentamiento para esferas de varios tamaños y densidades en agua y aire (tomado de Aplan, 2003).

Referencias:

Aplan, F. F. (2003). Gravity concentration. En: Fuerstenau M. C., Han, K. N. (ed.). Principles of Mineral Processing. Eaglewood, Society for Mining, Metallurgy, and Exploration, Inc., pp. 185-219.

