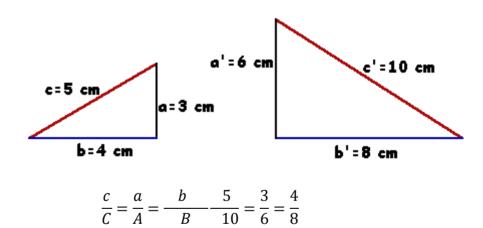

Semejanza de Triángulos

Dos figuras son semejantes cuando tienen la misma forma pero no el mismo tamaño. En el caso de los triángulos, tienen la misma medida de sus ángulos y sus lados son proporcionales. Su símbolo es \sim , en el ejemplo el $\Delta ABC \sim \Delta A'B'C'$ ya que cumple:

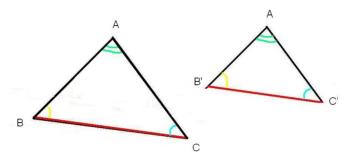


$$LA = LA', LB = LB'y LC = LC'$$

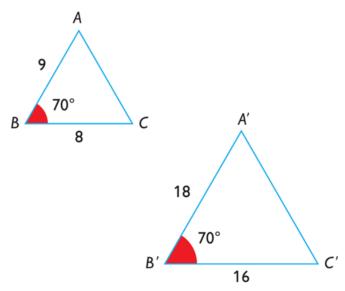
$$\frac{Lado \ AB}{Lado \ A'B'} = \frac{Lado \ BC}{Lado \ B'C'} = \frac{Lado \ CA}{Lado \ C'A'}$$

• **Razón de Proporcionalidad.**- Es la razón de lados homólogos y nos proporciona información acerca de en qué proporción una figura es más grande que otra o viceversa.

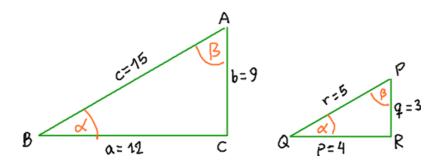
Ejemplo:



Haciendo operaciones tenemos que $^1/_2=^1/_2=^1/_2$, por lo que la razón de semejanza o razón de proporcionalidad es un medio: el primer triángulo es, en tamaño, la mitad del otro.


Semejanza de Triángulos

1. Teoremas de Semejanza de triángulos.


• Dos triángulos son semejantes si tienen 2 ángulos homólogos iguales.

• Dos triángulos son semejantes si tienen dos lados homólogos proporcionales, así como el ángulo comprendido.

Dos triángulos son semejantes si tienen sus tres lados proporcionales.

Semejanza de Triángulos

2. Teorema fundamental de la semejanza de triángulos.

Toda recta paralela a un lado del triángulo determina con los otros dos lados un triángulo semejante al primero.

En la figura que se muestra, la recta DE es paralela a la recta BC; por lo tanto, el $\triangle ABC$ es semejante al $\triangle ADE$.

Ε