Binomios Conjugados

El producto de binomios conjugados es siempre una diferencia de cuadrados, correspondiéndole signo negativo al cuadrado del término que en los binomios tienen signo diferente.

Explicación.

Dos binomios son conjugados si estos binomios sólo difieren de un signo. Así pues: (m+n) y (m-n) son dos binomios conjugados porqué sólo la n tiene signo diferente; en el primer binomio la n tiene signo positivo (+) y en el segundo término tiene signo negativo (-).

Ejemplos:

Binomio	Su conjugado
2h+4	-2h + 4
$-3k^2+10$	$3k^2 + 10$
$\frac{1}{3}$ – 2 p	$\frac{1}{3} + 2p$
-10x + 2h	10x + 2h
$4m^2 + 2$	$-4m^2 + 2$
$9x^2 + 6$	$9x^2 - 6$
-2a-b	-2a+b

Para encontrar el conjugado de un binomio bastará con cambiar el signo a uno de sus términos. Así, el conjugado de $(5h^2-4)$, puede ser:

$$(-5h^2 - 4)$$

 $(5h^2 + 4)$

Binomios Conjugados

En el primer conjugado se cambió el signo al término $5h^2$ y en el segundo se cambió el signo al término 4.

Ejemplo 1.

$$(2m-3)(2m+3) = 2m(2m+3) - 3(2m+3)$$
$$= 4m^2 + 6m - 6m - 9$$
$$= 4m^2 - 9$$

Ejemplo 2. Para multiplicar (6h - 2)(6h + 2), se aplica lo anterior

Cuadrado del primer término,

Cuadrado del segundo término,

Poniendo signo negativo al cuadrado del término que en los binomios tiene signo diferente.

$$(6h)^2 = 36h^2$$

$$(2)^2 = 4$$

$$(6h-2)(6h+2) = 36h^2 - 4$$

Se escribe -4 porque el 2 cambia de signo en los binomios.