Resistividad: La resistencia R de un alambre de longitud L y sección transversal A es:

$$R = \rho^{\frac{L}{A}}$$

R = Resistencia

Es una constante llamada resistividad y es una propiedad característica del material del cual está hecho el alambre. Para L en m, A en m² y R en Ω , Las unidades de ρ son Ω .m (Bueche, 2001)

ho = constante de proporcionalidad. Es una propiedad del material llamado resistividad, ho varía para distintos materiales y por los cambios de temperatura.

Ya se había mencionado los factores que influyen en la resistencia de un conductor:

- 1) La naturaleza del conductor: Se refiere al tipo de material del conductor, por ejemplo, si comparamos la plata y el hierro, la plata tiene menor resistencia.
- 2) La longitud del conductor: a mayor longitud mayor resistencia.
- 3) Su sección o área transversal: Al duplicarse la superficie de la sección transversal, se reduce la resistencia a la mitad.
- 4) La temperatura: En el caso de los metales, su resistencia aumenta casi en forma proporcional a su temperatura.

RESISITIVIDAD DE ALGUNOS METALES		
METAL	$ ho$ en Ω .m $$ a 0°C	
Plata	1.06 x 10 ⁻⁸	
Cobre	1.72 x10 ⁻⁸	
Aluminio	3.21 x10 ⁻⁸	
Platino	11.05 x10 ⁻⁸	
Mercurio	94.10 x10 ⁻⁸	

(Perez Montiel, 2003)

Tabla 2.2. Resistividad de conductores y aislantes a 20 °C.			
Material	ρ ₂₀ . (Ω · · mm²/m)	Material	$ ho_{20^{-}}(\Omega \cdot \text{mm}^2/\text{m})$
Plata	0,016	Isabelín	0,5
Cobre	0,01786	Constantán	0,5
Bronce	0,0180,056	Resistina	0,5
Oro	0,023	Kruppina	0,85
Aluminio	0,02857	Mercurio	0,96
Magnesio	0,045	Cromoniquel	1,1
Grafito	0,046	Bismuto	1,2
Tungsteno	0,055	Pizarra	10 ¹²
Wolframio	0,055	Celuloide	1014
Cinc	0,063	Tela endurecida	1014
Latón	0,070,09	Esteatita	10 ¹⁸

Niquel	0,080,11	Ámbar	1020
Hierro	0,100,15	Baquelita	10 ²⁶
Estaño	0,11	Caucho	10 ²⁰
Platino	0,110,14	Mica	10 ²⁰
Plomo	0,21	PVC	10 ²⁰
Maillechort	0,3	Vidrio	1020
Orocromo	0,33	Metacrilato	10 ²¹
Niquelina	0,43	Poliestireno	10 ²¹
Manganina	0,43	Polipropileno	10 ²¹
Novoconstantán	0,45	Parafina pura	1022
Reotan	0,47	Cuarzo	4 · 10 ²³

(Alcalde, 2011)

EJEMPLO GUIADO NÚMERO 1

Calcula la resistencia de un conductor de cobre $\,$ de $1.5\,$ km de longitud y $0.6\,$ mm 2 de área de su sección transversal $\,$ a) a $\,$ 0 $^{\circ}$ C $\,$ b) a $\,$ 20 $^{\circ}$ C

Datos Fórmula Sustitución para a)

R = ?
$$R = \rho \frac{L}{A} \qquad R = (1.72x10^{-8}\Omega.m)(\frac{1500m}{6x10^{-7}m^2})$$

L = 1.5 km = 1500 m

$$A = 0.6 \text{ mm}^2 = 6x10^{-7} \text{ m}^2$$
 $R = 43 \Omega$

a)a
$$0^{\circ}$$
C = 1.72 x 10^{-8} para b)

Conversión:

 $R = 44.65 \Omega$

 $1m^2 = 1x10^6 mm^2$

X = 0.6 mm² de donde x =
$$\frac{1m^2(0.6 mm^2)}{1x10^6 mm^2}$$

$$X = 6x10^{-7} \text{ m}^2$$

VARIACIÓN DE LA RESISTENCIA CON LA TEMPERATURA:

Por lo general, la resistencia aumenta con la temperatura en los conductores metálicos. Este aumento depende del incremento de la temperatura y de la materia de que esté constituido dicho conductor (Alcalde, 2011).

La resistencia eléctrica de los conductores metálicos aumenta casi en forma proporcional a su temperatura.

Experimentalmente se ha demostrado que:

$$R_{T} = R_0 (1 + \propto T)$$

 R_{T} = Resistencia del conductor en ohms (Ω) a cierta temperatura t

 R_0 = Resistencia del conductor en Ω a 0° C

 \propto = Coeficiente de temperatura de la resistencia del material conductor en ${}^{\circ}C^{-1}\left(\frac{1}{{}^{\circ}C}\right)$

T = temperatura del conductor en °C

En los metales \propto es mayor que cero, porque su resistencia aumenta con la temperatura. En cambio para el carbón, silicio y germanio, el valor de \propto es negativo porque su resistencia eléctrica disminuye con la temperatura (Perez Montiel, 2003).

Tabla 2.4. Coeficiente de temperatura a 20°C de las resistencias.			
Material	α	Material	α
Oro	0,0035	Constantán	0,0001
Plata	0,0036	Wolframio	0,0005
Aluminio	0,00446	Hierro	0,00625
Cobre	0,0039	Ferroniquel	0,00093
Estaño	0,0044	Maillechort	0,00036

(Alcalde, 2011)

COEFICIENTE DE TEMPERATURA PARA ALGUNAS SUSTANCIAS		
SUSTANCIA	ά EN ^o c ⁻¹	
ACERO	3.0 x 10 ⁻³	
PLATA	3.7 x10 ⁻³	
COBRE	3.8 x10 ⁻³	
Platino	3.9 x10 ⁻³	
HIERRO	5.1 x10 ³	
NIQUEL	8.8 x10 ³	
CARBON	-5.0 x10 ⁴	

(Perez Montiel, 2003)

EJEMPLO GUIADO NÚMERO 2

Calcula la resistencia de un alambre de cobre a 73° C si su resistencia a 0° C es de 15Ω .

Datos	Fórmula	Sustitución
$R_t = \dot{c}$	$R_{T=}R_0(1+\propto T)$	$R_{T=}$ 15 Ω (1 + 0.0039° C^{-1} x 73°C)
T = 73°C		$R_{T} = 15 \Omega (1.2847)$
$R_0 = 15 \Omega R_{T} = 19.27 \Omega$		
\propto T _{Cobre} = 0.0039 $^{\rm o}$ C ⁻¹		