Características Importantes en las Conexiones en Paralelo

1.- La corriente eléctrica que entra a la unión puede seguir varias trayectorias por separado, dependerá del número de resistencias que se conectan en paralelo; de tal manera que si una resistencia es desconectada, las demás seguirán funcionando (Perez Montiel, 2003).

La corriente total del circuito en paralelo es igual a la suma de las corrientes en las ramas individuales.

$$| = |_1 + |_2 + |_3 + |_n$$

2.- Las caídas de voltaje a través de todas las ramas en un circuito en paralelo deben ser de igual magnitud (Tippens, 1991).

$$V = V_1 = V_2 = V_3 \dots V_n$$

3.- La inversa de la resistencia equivalente es igual a la suma de las inversas o de las resistencias individuales conectadas en paralelo (Tippens, 1991).

Si en la ecuación anterior aplicamos la ley de Ohm:

$$I = I_1 + I_2 + I_3 + \dots + I_n$$

$$\frac{V}{R} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots + \frac{V_n}{R_n}$$

Características Importantes en las Conexiones en Paralelo

Pero como los voltajes son iguales, se puede dividir entre el voltaje y se obtiene:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$
 , $| = \frac{V}{R_e}$

4.- Cuando solo dos resistores se conecten en paralelo utilizaremos:

$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2}$$

Y si se resuelve algebraicamente para R

$$\mathbf{R} = \frac{R_1 R_2}{R_1 + R_2}$$

"La resistencia equivalente de dos resistores conectados en paralelo es igual a su producto dividido entre su suma" (Tippens, 1991).

"La resistencia equivalente en paralelo siempre es menor al valor más pequeño de las resistencias individuales" (Bueche, 2001).

Características Importantes en las Conexiones en Paralelo

EJEMPLO GUIADO

Calcula la resistencia equivalente del circuito en paralelo y la corriente que circula por cada resistor, si el voltaje total aplicado al Circuito es de 12 V y R_1 = 5 Ω , R_2 = 3 Ω , R_3 = 7 Ω .

Datos

$$R_1 = 5$$

$$R_2 = 3$$

$$R_3 = 7 \Omega$$

$$V = 12 v$$

Fórmula

$$\Omega \frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \frac{1}{R_e} = \frac{1}{5\Omega} + \frac{1}{3\Omega} + \frac{1}{7\Omega}$$

$$\Omega \frac{1}{R_e} = \frac{71}{105\Omega}$$

$$R_{e} = \frac{105\Omega}{71} = 1.47 \Omega$$

$$| = \frac{V}{R_e}$$

$$\mathbf{I} = \frac{12v}{1.47\Omega} = \frac{v}{\frac{v}{A}} = \frac{vA}{V}$$

Sustitución

I = 8.16 A