Movimiento Circular Uniformemente Variado

Recordemos las características de este tipo de movimiento que mencionamos en la lección anterior:

MOVIMIENTO CIRCULAR UNIFORMEMENTE VARIADO

Características:

- ✓ La trayectoria que describe el cuerpo es una circunferencia
- ✓ Su rapidez varía uniformemente y es tangente a la trayectoria

La aceleración angular (α) de un objeto es la razón con la cual la velocidad angular cambia con el tiempo. Si la velocidad angular cambia uniformemente de ωia ωf en un tiempo t, por lo que la ecuación para calcularla es :

$$\alpha = \frac{\omega f - \omega i}{t}$$

De donde α =aceleración angular, ωf = velocidad angular final ωi = velocidad angular inicial.

Movimiento Circular Uniformemente Variado

Observemos las diferencias entre las unidades de velocidad y de aceleración:

ω	α	
velocidad	aceleración	
Rad/seg	Rad/seg²	
Rev/min	Rev/min²	
Ciclos/seg	Ciclos/seg²	
Etc.	Etc	

Como puedes observar, la diferencia entre las unidades de velocidad angular y aceleración angular es el tiempo.

Las fórmulas que utilizas para trabajar en el movimiento rectilíneo uniformemente variado son análogas a las del movimiento angular uniformemente acelerado, como se muestra en el siguiente cuadro:

M.R.U.V	cambio	M.C.U.A
$a = \frac{vf - vi}{t}$	$a \rightarrow \alpha$	$\alpha = \frac{wf - wi}{t}$
$s = vit + \frac{at^2}{2}$	S o heta	$\theta = \omega i t + \frac{\alpha t^2}{2}$
2as = vf² - vi²		$2 \alpha \theta = \omega f^2 - \omega i$
$S = \frac{vi + vf}{2} \cdot t$	$V \rightarrow \omega$	$\theta = \frac{\omega i + \omega f}{2}$. t

Movimiento Circular Uniformemente Variado

En algunas ocasiones tendrás que realizar conversiones, por ejemplo en las unidades que manejes para s o θ según sea el caso, por ejemplo, si θ está expresada en radianes y lo quieres convertir a revoluciones, basta con utilizar el factor de conversión:

Número de radianes (
$$\frac{1 \, revolución}{2 \, \pi \, rad}$$
)

EJEMPLO GUIADO NÚMERO 1

Calcula la aceleración angular de un volante si aumenta su velocidad de rotación de 5 rev/seg a 18 rev/seg en 12 seg.

Datos

Primero convertiremos rev/seg a rad/seg

$$\alpha = ?$$

$$\omega i = 5 \frac{rev}{seg} \cdot \frac{2\pi \, rad}{1 \, rev} = 31.43 \, \frac{rad}{seg} \quad , \quad \omega f = 18 \frac{rev}{seg} \cdot \frac{2\pi \, rad}{1 \, rev} = 113.19$$

rad sea

$$\omega i = 5 \text{ rev/seg}$$

Fórmula

sustitución

$$\omega f$$
 = 18 rev/seg

$$\alpha = \frac{\omega f - \omega i}{t} \alpha = \frac{113.19 \frac{rad}{seg} - 31.43 \frac{rad}{seg}}{12 seg} = \frac{81.76 \frac{rad}{seg}}{12 seg} = 6.81 \frac{rev}{seg2}$$

t= 12 seg

$$\alpha = 6.81 \text{ rad/seg}^2$$

Movimiento Circular Uniformemente Variado

EJEMPLO GUIADO NÚMERO 2

Un carrusel de un parque inicia su rotación partiendo del reposo y se acelera a una razón constante de 0.008 rev/seg^2 , calcula:

- a) La velocidad angular después de un minuto y medio de iniciado el mov.
- b) El número de revoluciones que gira en los 2 minutos

Datos

Fórmula

Sustitución

$$\omega i = 0\alpha = \frac{wf - wi}{t}\omega f = (0.050 \frac{rad}{seg2})(90 \text{seg}) + 0 = 4.5 \frac{rad}{seg}$$

$$\omega f = ?$$

Despejando $\omega f \omega f = 4.5 \text{ rad/seg}$

$$\alpha = 0.008 \text{ rev/seg}^2 \alpha t + \omega i = \omega f$$

conversión

$$0.008 \frac{rev}{seg2} \cdot \frac{2\pi rad}{1 \ rev} = 0.050 \frac{rad}{seg2}$$

Movimiento Circular Uniformemente Variado

b)
$$\theta$$
=?

Fórmula

SUSTITUCIÓN

$$\omega i = 0\theta = \omega it + \frac{\alpha t^2}{2}\theta = \frac{(0.050 \frac{rad}{seg^2})(8100 seg^2)}{2} = \frac{405 \, rad}{2} =$$

$$\theta = \frac{\alpha t^2}{2}\theta = 202.5 \text{ rad}$$

$$\alpha$$
 = 0.050 rad/seg²

si 1 rad =
$$180^{\circ}/\pi$$

$$202.5 \text{ rad} = x$$

202.5 rad = x $x = 11602.40^{\circ}$

Y si
$$1 \text{ vuelta} = 360^{\circ}$$

 $X = 11602.40^{\circ}$ 32.23 yueltas o revoluciones