RESOLUCIÓN DE PROBLEMAS QUE IMPLIQUEN CONGRUENCIA Y SEMEJANZA DE TRIÁNGULOS

Resolver problemas de congruencia y semejanza de triángulos implica identificar las relaciones entre las dimensiones y los ángulos de los triángulos y aplicar estas propiedades para encontrar medidas desconocidas o verificar equivalencias. Estos conceptos son herramientas fundamentales en geometría y tienen aplicaciones prácticas en múltiples áreas.

Enfoques para Resolver Problemas de Congruencia

Los triángulos son congruentes si cumplen con alguno de los siguientes criterios:

- 1. Lado-Lado (LLL): Si los tres lados de un triángulo son iguales a los lados correspondientes de otro triángulo.
- 2. Lado-Ángulo-Lado (LAL): Si dos lados y el ángulo comprendido entre ellos son congruentes en ambos triángulos.
- 3. Ángulo-Lado-Ángulo (ALA): Si dos ángulos y el lado incluido entre ellos son congruentes.
- 4. Lado-Lado-Ángulo (LLA): Si dos lados y el ángulo opuesto al mayor de ellos son congruentes.

Ejemplo de Problema:

Dado un triángulo ABC con lados AB=6 cm, BC=8 cm y AC=10 cm, verifica si es congruente con otro triángulo DEF con lados DE=6 cm, EF=8 cm y DF=10 cm.

Solución:

Compara las longitudes de los lados. Como AB=DE, BC=EF y AC=DF, los triángulos son congruentes por el criterio LLL.

Enfoques para Resolver Problemas de Semejanza

Los triángulos son semejantes si cumplen con alguna de las siguientes condiciones:

 Ángulo-Ángulo (AA): Si dos ángulos de un triángulo son iguales a dos ángulos de otro triángulo.

- 2. Lado-Ángulo-Lado (LAL): Si dos lados de un triángulo son proporcionales a dos lados de otro triángulo y el ángulo comprendido entre ellos es congruente.
- Lado-Lado (LLL): Si los tres lados de un triángulo son proporcionales a los lados correspondientes de otro triángulo.

Ejemplo de Problema:

Un triángulo tiene lados de 4 cm, 6 cm y 8 cm. Otro triángulo tiene lados de 6 cm, 9 cm y 12 cm. ¿Son semejantes?

Solución:

Calcula las proporciones: $\frac{4}{6} = \frac{6}{9} = \frac{8}{12} = \frac{2}{3}$. Como las proporciones son iguales, los triángulos son semejantes por el criterio LLL.

Resolviendo Problemas con el Teorema de Tales

El Teorema de Tales establece que si se traza una línea paralela a un lado de un triángulo, esta divide los lados opuestos en segmentos proporcionales.

Ejemplo de Problema:

En un triángulo ABC, se traza una línea paralela al lado BC, que intersecta los lados AB y AC en los puntos D y E. Si AB=12 cm, AD=4 cm y AC=15 cm, encuentra AE.

Solución:

Por el Teorema de Tales:

$$\frac{AD}{AB} = \frac{AE}{AC}$$

Sustituyendo los valores:

$$\frac{4}{12} = \frac{AE}{15}$$

Resolviendo para AE:

$$AE = \frac{4 \times 15}{12} = 5 cm$$

Aplicaciones en la Vida Cotidiana

- Construcción y arquitectura: determinar proporciones entre planos a escala y estructuras reales.
- 2. Cartografía y navegación: medir distancias inaccesibles mediante triángulos semejantes.
- 3. Astronomía: calcular distancias entre estrellas usando triángulos semejantes.

Referencias:

Hernández, M., & López, J. (2019). Geometría elemental para el aprendizaje práctico. Ciudad de México: Editorial Matemática.

Serrano, P., & Gómez, R. (2021). Aplicaciones de la geometría:

Congruencia y semejanza de triángulos. Barcelona: Ediciones Científicas.

Smith, J. (2020). Geometry Essentials: Congruence and Similarity in Practice.

New York: Academic Press.

Torres, L. (2018). "Teorema de Tales y sus aplicaciones en la resolución de triángulos".

Revista de Matemáticas, 22(3), 45-50.

Vega, C. (2022). Teoremas y propiedades geométricas aplicadas en la vida cotidiana.

Madrid: Editorial Universitaria.